Non-heat sterilisation of food products
Explore innovative non-thermal sterilisation techniques for food preservation and safety. This category dives into methods like high-pressure processing (HPP) and ozone sterilisation, highlighting their effectiveness in maintaining food quality while ensuring microbial safety. Learn how cutting-edge alternatives are reshaping the food industry.
Comparative Analysis of Minimum Infectious Dose and Gastric Acid Resistance Between Salmonella and Enterohemorrhagic Escherichia coli
In this article, we'll explore the differing amounts of bacteria needed to cause food poisoning by two culprits: Salmonella and enterohemorrhagic Escherichia coli. Additionally, we'll discuss a major factor contributing to these differences: the varying resistance to stomach acid between the two.
High-Pressure Processing (HPP) of Food: A Cutting-Edge Non-Thermal Preservation Method
High-Pressure Processing (HPP), also referred to as High Hydrostatic Pressure (HHP) or Ultra High Pressure (UHP), is a revolutionary non-thermal food preservation technology designed to inactivate foodborne pathogens and spoilage bacteria. Unlike traditional thermal processing, HPP minimizes negative effects on the taste, texture, appearance, and nutritional value of foods, making it a preferred alternative for maintaining food quality. In this article, we delve into the fundamentals of HPP, focusing on its application in microbial sterilization and its advantages over conventional sterilization methods.
The Power of Ozone Sterilization
This article summarizes the basics of ozone gas and ozone water. Ozone, a potent oxidizing agent, boasts remarkable sterilizing power. Additionally, it naturally decomposes into non-toxic oxygen, leaving no residues when used as a food sterilizer. Ozone can be utilized in two forms: as ozone gas or ozone water. Using ozone gas requires high concentrations, but it comes with several challenges, such as toxicity due to gas diffusion and the corrosive effect it has on a wide range of equipment, limiting its current applications in industry. On the other hand, ozone water, even in minimal concentrations (1-5 ppm), exhibits antimicrobial activity. The use of ozone water is not only promising for the food industry but also has broad potential applications in domestic and medical sectors.